The Phytogeography and Ecology of the Coastal Atacama and Peruvian Deserts
نویسندگان
چکیده
The Atacama and Peruvian Deserts form a continuous belt for more than 3500 km along the western escarpment of the Andes from northern Peru to northernmost Chile. These arid environments are due to a climatic regime dominated by the cool, north-flowing Humboldt (Peruvian) Current. Atmospheric conditions influenced by a stable, subtropical anticyclone result in a mild, uniform coastal climate nearly devoid of rain, but with the regular formation of thick stratus clouds below I 000 m during the winter months. Where coastal topography is low and flat, the clouds dissipate inward over broad areas with little biological impact. However, where isolated mountains or steep coastal slopes intercept the clouds, a fog-zone develops. This moisture allows the development of plant communities termed lomas formations. These floristic assemblages function as islands separated by hyperarid habitat devoid of plant life. Since growth is dependent upon available moisture, an understanding of climatic patterns is essential in efforts to interpret present-day plant distributions. Topography and substrate combine to influence patterns of moisture availability. The ecological requirements and tolerances of individual species ultimately determines community composition. Species endemism exceeds 40% and suggests that the lomas formations have evolved in isolation from their nearest geographic neighbors in the Andes. While the arid environment is continuous, there appears to be a significant barrier to dispersal between 18° and 22"8 latitude in extreme northern Chile. Less than 7o/o of a total flora,
منابع مشابه
Phylogeny of Nolana (Solanaceae) of the Atacama and Peruvian deserts inferred from sequences of four plastid markers and the nuclear LEAFY second intron.
The phylogeny of Nolana (Solanaceae), a genus primarily distributed in the coastal Atacama and Peruvian deserts with a few species in the Andes and one species endemic to the Galápagos Islands, was reconstructed using sequences of four plastid regions (ndhF, psbA-trnH, rps16-trnK and trnC-psbM) and the nuclear LEAFY second intron. The monophyly of Nolana was strongly supported by all molecular ...
متن کاملExtreme environments as potential drivers of convergent evolution by exaptation: the Atacama Desert Coastal Range case
We have recently discovered a variety of unrelated phototrophic microorganisms (two microalgae and one cyanobacteria) in specialized terrestrial habitats at The Coastal Range of the Atacama Desert. Interestingly, morphological and molecular evidence suggest that these three species are all recent colonists that came from aquatic habitats. The first case is Cyanidiales inhabiting coastal caves. ...
متن کاملMulti-annual climate in Parque Nacional Pan de Azúcar, Atacama Desert, Chile Clima multianual en el Parque Nacional Pan de Azúcar, Desierto de Atacama, Chile
The lomas formations of the Peruvian and Atacama deserts are characterized by both climatic and floristic spatial heterogeneity, as well as non-contiguous pockets of relatively distinct flora. We examined two distinct types of communities in Parque Nacional Pan de Azúcar in Chile, the low-elevation arroyo and bajada community, and the high-elevation fog-zone community. We determined the distrib...
متن کاملEutrophication and trophic status using different indices: A study in the Iranian coastal waters of the Caspian Sea
The aim of this study is to assess the eutrophication and trophic status based on different indices and also reference threshold values in the Iranian coastal waters of the southern Caspian Sea (ICWSCS). The water samples (three replicates) were collected along four transects (off the coast from Anzali, Tonekabon, Nowshahr and Amirabad) between spring 2013 and winter 2014. The results show mark...
متن کاملScale characteristics of the bloom event: A case study in the Iranian coastal waters of the Southern Caspian Sea
Nutrient enrichment in water and sediments due to excessive anthropogenic activities in recent years has caused excessive algal growth in the Caspian Sea. The current study was conducted to survey the abundance of phytoplankton, its dominant species and chlorophyll-a [Chl-a] concentration in algal bloom aspect in the Iranian coastal water of Caspian Sea during four seasons from 2013 to 2014. Th...
متن کامل